Metaphysical Dogmatism

In this post I will explain the problem of reductionism in the sciences and why the insistence on reductionism is objectionably dogmatic.  In the course of doing so, I will introduce a theoretical framework free of metaphysical dogmatism and sketch out why this framework might be preferable.

A scientific enterprise investigates a very circumscribed domain of ‘objects.’  No scientific enterprise is concerned with the general domain of all ‘things.’  Even the most (rational) general research program will inevitably become specialized in its generality.  To see this, consider modern logic.  Logic is arguably the most general of all research programs, exploring (more or less) all conceivable abstract structures (and so all the ways things could be rationally related).  But even logic, in all its generality, is a highly specialized, technical, and complicated discipline.  It is in no way accessible to the layperson.1  It is a speciality, and in this way we might say that it is ‘specialized in its generality.’  If this is true for logic, then this should also follow for the rest of the sciences (e.g. physics, neuroscience, psychology).

In noting the specialized nature of sciences and their circumscribed domains, we should not be so quick to dismiss our ordinary intuitions when they conflict with whatever scientific paradigm is in vogue.  That our intuitions run counter to current scientific paradigms (of explanation) does not entail that our intuitions are mistaken.  For the current scientific paradigms may be founded on concepts and principles that are ill-suited to the character of whatever it is that intuitively we wish to investigate.  For example, consider biology’s transition from metaphysics to science re vera.  Biological concepts like finality and autoregulation escaped purely mechanical explanation.  So, at the time, these biological concepts seemed genuinely metaphysical — they could only be treated as part of the (obscure) nature of biotic systems.  But these metaphysical peccadilloes eventually stimulated the development of new concepts in a new scientific discipline (viz. biology).  And in so doing, features like finality and autoregulation become ‘objectivized’ and transition from ostensibly metaphysical happenings to scientific phenomena re vera.  (The metaphysical concepts become the objective concepts of the new science.)

There are two kinds of reductionism in science, viz. (a) metaphysical and (b) methodological.  The former tries to make a single science (e.g. physics or mechanics) fundamental and subsequently ‘trace back’ the remaining sciences (e.g. chemistry, neuroscience, sociology) to the single, fundamental one (with its basic constituents, matter and motion).2  The latter is the conception that a satisfactory explanation of some system of reality is achieved by analyzing the system into its components or elements.  This amounts to the idea that we look to the behavior of the parts to account for the behavior of the whole.  For example, there is the thought that biological facts are explainable by looking at chemical facts, and those in turn by looking at thermodynamical facts (e.g. we look to the behavior of individual molecules to explain the behavior of biotic systems).  For a time, there has been a philosophical view claiming that real philosophical progress requires logical reduction.  To understand biology we reduce it to the simpler chemistry (which is more primitive) and try to there derive all the corresponding biological facts.  The solution to skepticism was though to come from reduction, we know the higher-level facts by reducing them to the more basic and knowable lower-level facts.

 

First we’ll explain the problem with metaphysical reductionism.  (This can be seen as the core of the mechanistic world view.)  Privileging any single science as ‘fundamental’ is not a scientific notion.  There is no scientific reason to assert that physics is more ‘fundamental’ than chemistry.  This is not the kind of thing that can be decided empirically.  Consequently, the privileging of some, one science as fundamental is a metaphysical view.  To privilege a science as fundamental amounts to the adoption of [that science]-metaphysical world conception.  There have been attempts to privilege mechanics as the fundamental science.  But this amounts to adopting a mechanistic metaphysical world conception — it says that all there is is mechanics, and so all reality really is are the fundamental constituents of mechanics, namely matter and motion; all nature is reducible to these two things.  This is the kind of metaphysical dogmatism that Schlick taught us to avoid when he introduced his concept of ‘the given.’  And to really press the point, what we are directly acquainted with is experience, not matter or spacetime or somesuch.  If we were really gung-ho about reductionism, then we would have to admit that all knowledge (in something purportedly primitive or fundamental, like physics) isn’t really knowledge of the physical bodies around us, but is actually knowledge of experiments and meter readings, as these are the tools that we must use in our perceptual experience to get any knowledge of the physical universe at all.  This is a conclusion that most physical and material reductionsists should like to avoid, but nevertheless this where dogmatic metaphysical reductionism must inevitably lead.

To explain the problem with methodological reductionism, we should first describe how scientific explanation proceeds.  Scientific explanation is a deductive process.3  We establish general premises by proposing and testing/falsifying hypotheses.  After establishing the general premises, we can deduce, logically, its consequences (for any particular event or state-of-affairs).  The general principles are thought to govern the large variety of facts that we want to explain.  This is what makes it deductive.  (Think about how all states-of-affairs in physics are calculable.)

Now let’s consider how methodological reductive explanation works.  In any particular science (e.g. physics, neuroscience), all the facts pertaining to that science follow deductively from that science’s general premises.  But reducing one science, like biology, to a more ‘fundamental’ science, like physics, is trickier; the reductionist cannot maintain his neat deductive process of explanation.  For instance, consider how the reductionist tries to explain life.4  At the crucial point, in the transition from physical, abiotic chemicals to veritable life (self-organization; self-sustenance), the reductionist must invoke chance in his explanation.  He posits that something extremely improbable, though not theoretically impossible, occurs (at some point in the history of the universe).  In explaining the ’emergent’ fact of \acute{e}lan vitale, the reductionist abandons deductive explanation and appeals to accidental, improbable events.  This amounts to a vague and modest admission of a(n) ‘(im)probabilistic’ explanation for a scientific phenomenon that should be explained in a logically satisfactory/plausible way.  Consequently, if scientists ever succeed in synthesizing life from raw chemical constituents they still would not have provided an adequate scientific explanation for what had happened, but at most suggest an ‘interesting logical possibility of its origin.’ (For we still have no straightforwardly scientific, deductive explanation.)  Nevertheless, biology transitioned to a veritable scientific enterprise.  But it not as though the mechanists have won (insofar as they were concerned with scientifically adequate explanatory reduction) and that the vitalists lost (in that we no longer think of the $\acute{e}&bg=e7e5e3$lan vitale).  Its that we had to develop a richer set of concepts (viz. autoregulation and heredity) that we couldn’t have acquired in pursuing a purely physical scientific research program.

There are two kinds of methodological reductionism, (c) ‘looking down’ and (d) ‘looking up.’  We have already described (c), where the Science_{n+1} is explained in terms of the more fundamental Science_n.  (d) works the other way, where we explain the Science_n be ‘looking up,’ as it were, to the Science_{n+1}.  To bring out the difference, consider the science of psychology.  Advocates of (c) will claim that all of the ‘scientific’ aspects of psychology are actually in (and so reducible to) the domain of neurophysiology.  Advocates of (d) will claim that all psychology not reducible to neurophysiology must be traced back to the social context at large (that is, to sociology).  But both (c) and (d) reductionism are equally dogmatic and objectionable.  Again, empirical investigation will not compel you to privilege any single science (either via ‘looking up’ or ‘looking down’), so the insistence on any one fundamental science can only be metaphysical dogma.  There is no neat, deductive, hierarchical structure within the totality of scientific disciplines; they are largely discrete.

And this makes sense.  Consider any system S.  All components of S depend on their existence on the existence the whole S.  This becomes clear when we consider human, anatomical system.  The whole human (S) is made up of components (heart, lungs, arteries, liver, stomach, etc.).  The heart (and any other part) cannot exist in isolation.  For the function of the heart is to pump blood through a body — but to accomplish this task, there must be veins and arteries which carry the blood.  The stomach requires blood in order to perform its role within the system.  A human S without a heart is not a functioning system.  All the parts come together, in some kind of synthesis, to sustain and constitute the system and their existence cannot be made sense of in isolation.  To point to a higher structure or an underlying lower structure is to miss the genuine reality of the system in some way.

To free science of metaphysical and methodological dogma, we should not put stock in reductionism.  Reductionism does not conform to what we want out of scientific explanation — deduction of what-is-so from a set of general premises.  In its place, we may wish to consider the more flexible systems theory.  Without going into any detail, here’s the gist.  For now, we can think of a system as (1) composed of components and (2) composed of relations between those components.  A theory of that system will describe relations and mathematical functions that hold between components of the system, so that we might make predictions about states-of-affairs within that system.  The ontological status of the components of the system have no impact on how the system functions (but presumably all components within a system will be of the same type [but this is not necessarily so[^5]).  The advantage of this kind of approach, in examining some definite system, we do not need to justify the epistemic possibility of examining the system via reducing it to the definite knowledge of some other system which we are confident that we already have.  We do not need a full account of physics to do neurophysiology (and so on, up the hierarchy).  The only real role physics has in advancing neurophysiology is in developing/engineering the various tools that the neurophysiological enterprise demands for its investigation.

An intuitive reason for this comes from the following observation.  Whenever a new scientific discipline emerges, it always determines a new realm of ‘objects’ to be scientific investigated.  This new science brings with it a new technological, (empirical) conceptual apparatus which lends itself to investigating these newfound ‘objects’ of reality.  Systems theory allows us to look at this new discipline without the metaphysical baggage that comes with reducing all the processes to mechanical laws of matter and motion.  For one of the biggest obstacles to the advance of science (and, too, philosophy), is the dogmatic insistence on traditional categories like mind and body,'matter and spirit,’ `mental and physical.’  Metaphysical reductionism insists on these distinctions (and for that reason is problematic), but systems theory does not force these distinctions upon us.  We can consider a system as just the relations between its components without taking any metaphysical/ontological stance on what those components actually are.

A second intuitive reason for this ‘systems theoretic’ approach: without admitting the primacy of systems theory, we would not be able to even see systems at all (even when they really are there). Consider a conic party-hat on a brown table.  If we just consider the party-hat by itself, we will never see all the conic sections which are inside it.  The conic sections only become apparent when we take our birthday-scissors and cut the hat in a certain way.  But when we cut it, we can genuinely see the circles, ellipses, or parabolas that compose it.  But try asking the question, ‘Are these geometrical shapes really inside the cone?’  There is no satisfying answer to this.  For if you say that they are not actually in the cone (but merely ‘potentially’ inside it or somesuch, only to be actualized by the veritable ‘cutting’ of the cone), then you may be met by the reply: but how could geometrical figure come out of the cone if they were not already really in the cone?

But with systems theory, we can ‘see’ how the cone is composed of the geometrical figures.  We can see systems that are in fact embedded in reality.  Systems theory allows us to ‘cut’ reality (or the cone) in such a way that we can see genuine systems where it had been previously difficult to see such systems.  In this way, we can understand reality in a much more comprehensive way, without worrying about reduction.  All features of the world become epistemically accessible to us — we may investigate systems of nations states just as we may investigate quarks (for the are both real components of the world, despite the prima facie differences in their ontological statuses).  In a similar spirit, Searle tell us, `to find out how the world works, you have to use any weapon you can lay your hands on.’  And this is exactly what systems theory lets us do: we identify a system and attack it with a conceptual or methodological framework suited to the system.  And so far this has seemed to work; we attack neurophysiology and physics with different frameworks, and we can advance both of them simultaneously.

And in a certain way, this sits nicely with Kuhn.  Kuhn did think that scientists give us truths about the world (I disagree, but it is the next point that is relevant), but instead scientists give us a series of ways of solving `puzzles,’ of dealing with the puzzling problems that emerge in any scientific paradigm.  They develop tools and methodologies to solve these puzzles (and the tools and methodologies vary both with the paradigm and the scientific disciple under question).  This attitude is shared by systems theory.

So we have shown that reduction to single, fundamental science is nothing more than metaphysical dogma.  If we want to investigate reality in its most robust and nuanced way, then we ought to view the world as composed of systems (for which there may or may not be an appropriate way of cutting them up).  For investigation beginning from (e.g. mechanical) metaphysical dogmatism forces us into an impoverished conception of reality where we will ‘miss-out’ on systems which really are there.

References:
Schlick
Agazzi
Searle
Chalmers

 


  1. I think that this is both poignant and ironic, for humans are the paradigmatic rational animals. 
  2. There was an attempt to provide a purely mechanistic explanation for biology facts.  The attempt has a certain intuitive appeal, but at the end of the day was not sufficiently plausible or persuasive to researchers.  This is because biological features like finality, autoregulation, etc. could not be adequately accounted for mechanically. 
  3. A difference worth noting: while scientific explanation is deductive, positing scientific hypotheses is usually an inductive process.  The merit of these hypotheses is established via test implications.  So, H \rightarrow I, and \neg I, therefore \neg H.  If I instead of \neg I, then the hypothesis is not falsified, but nor is it proved. 
  4. Ye ol’ \acute{e}lan vitale. 
  5. I intend to explain this further in another paper or post.  It comes in at the level of relations between subsystems in a more `global’ system.
Advertisements

5 thoughts on “Metaphysical Dogmatism

  1. Interesting post! I’m not familiar with the phrase “systems theory,” but I’ve encountered the opposite viewpoint on many occasions. From what I gather, this theory allows for reductionism within a certain framework, but not in every territory.

    “…we would have to admit that all knowledge (in something purportedly primitive or fundamental, like physics) isn’t really knowledge of the physical bodies around us, but is actually knowledge of experiments and meter readings, as these are the tools that we must use in our perceptual experience to get any knowledge of the physical universe at all.”

    Well put. I get the sense that popular scientific articles like to flaunt ideas that run against common sense, almost as if it’s a right of passage. But you’re right, in truth we actually rely on tools to measure, and those “meter readings” are within perceptual experience, they must be. I find it difficult to take when perception is theorized as mere illusion on a grand scale because then the theory rips the carpet out from under itself. There’s no need for that (except, maybe, to sell popular articles with eye-catching titles.)

    On systems theory, how would this apply to philosophy? Specifically ontology?

    Like

    • Its not as though all reductive explanations are bad, but that scientific (methodological) reductionism has no scientific basis (so the choice of reducing up or down is arbitrary) and metaphysical reductionism leads us to bad places. So looking for systems wherever you can find them and studying them as they are is the most scientifically (deductively) explanatory approach you could hope for.

      I definitely agree with what you say about the theory “ripping the carpet out from under itself”.

      I’m actually going to post soon about how systems theory and ontology (and philosophy) relate. I’m really just working through my thoughts on this stuff — my hope is to eventually show that mental states cannot be reduced to brain states (they are ontologically distinct systems). It also seems that systems are going to be (logically) prior to most other things.

      Liked by 1 person

  2. Pingback: The Priority of the System | Reflecting Light

  3. Pingback: Semiotics and System Development | Reflecting Light

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s